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Abstract

In recent years, multiple genes or their protein products have been linked to initiation
and progression of prostate cancer. Such genes include TMPRSS2, ERG, PTEN, and
MDM2. This chapter discusses the pathological roles as well as the potential diagnos‐
tic and therapeutic applications of these genes that are highly expressed in prostate
cancer when compared to other cancer types. The presence of these genes and related
defects are linked to growth, progression, metastasis, invasiveness and resistance in
prostate cancers. While knowledge related to TMPRSS2, ERG, and PTEN have been
accumulating  in  the  last  two  decades,  the  prometastatic  role  of  MDM2  has  been
emerging in the last few years and revealing important functions related to prostate
cancer progression.
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1. Introduction

Prostate cancer (PCa) is a long latency tumor that occurs in males that are typically aged
50 years and older. Globally, more than 1.1 million cases of prostate cancer were recorded in
2012, accounting for around 8% of all new cancer cases and 15% in men [1]. In 2015, an
estimated 220,800 men will be diagnosed with PCa in the United States and an estimated 27,540
men will die due to the disease making this malignancy the second leading cause of cancer-
related death in men [2]. In addition, African-American (AA) men have the highest inci‐
dence and mortality from PCa when compared to other races [2]. The pathophysiology of
prostate cancer is not fully elucidated, but it is well established that this dreadful disease is
primarily initiated by cellular proliferation within pre-existing ducts and glands, which is
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referred to as Prostatic  intraepithelial  neoplasia (PIN).  The PIN eventually progresses to
invasive prostate cancer [3]. Clinical manifestations of the disease are variable and based on
the transport by blood or the lymphatic system to metastatic sites and the effects of local‐
ized tumor growth. Localized prostate cancer is typically curable with targeted local thera‐
py such as radical prostatectomy or radiation therapy. In metastatic prostate cancer, one of
the successful strategies of treatment is surgical or chemical castration leading to androgen
deprivation  therapy  (ADT)  [4].  Unfortunately,  approximately  33%  of  patients  develop
resistance to these treatments with the eventual increases in the number of androgens, prostate
specific antigen (PSA), and circulating tumor cells (CTCs), leading to the more progressive
and metastatic castration resistant prostate cancer (CRPC) [5]. The poor prognosis associat‐
ed with metastatic prostate cancers is attributable in part to the highly heterogeneous nature
of the cancer cells, which provides a significant hurdle for treatment of the disease [6]. Multiple
genomic alterations underlie the clinical heterogeneity of prostate cancer and such aberra‐
tions include, point mutations, microsatellite variations, and chromosomal alterations such as
translocations,  insertions,  duplications,  fusions,  and deletions [6,  7].  Therefore,  there is a
heightened interest in understanding the role of these genetic changes in prostate cancer
development and progression.

2. Key genes in prostate cancer progression

In the past decade, several genes associated with prostate cancer have been identified. Four
such genes: the ETS-related gene (ERG), The Transmembrane Protease Serine 2 (TMPRSS2),
Mouse double minute 2 homolog (MDM2), and Phosphatase and tensin homolog (PTEN) have
gained recognition for their high specificity of expression in prostatic carcinomas.

2.1. Prostate cancer and PTEN

PTEN is  a  protein coding gene that  encodes for  phosphatidylinositol-3,4,5-trisphosphate
3-phosphatase.  It  contains a  tensin-like domain in addition to  a  catalytic  domain similar
to that  of  the dual  specificity  protein tyrosine phosphatases.  PTEN is  one of  the most
commonly mutated tumor suppressor genes in human prostate  cancer.  Interestingly,
many aspects  of  PTEN expression and function,  including transcriptional  and post-
transcriptional  regulation,  post-translational  modifications,  and protein-protein interac‐
tions have been shown to be altered in human prostate  cancer.  PTEN is  a  non-
redundant phosphatase that  directly  interferes  with the phosphatidylinositol  3-kinase
(PI3K)/AKT signaling pathway and thereby controls  several  processes that  are  impor‐
tant  in  the homeostasis  of  cell  survival  and a multitude of  cellular  functions,  which
includes growth,  proliferation,  metabolism,  migration,  and cellular  architecture [8].  PTEN
removes the phosphate from the D3 position of  phosphatidylinositol-3,4,5-triphosphate
(PIP3),  a  product  of  PI3K,  thus,  can lead to inhibition of  downstream AKT activation in
normal  conditions.  However,  when PTEN is  mutated there is  sustained activation of
AKT that  can lead to cell  proliferation,  angiogenesis  and other  related events.  AKT exists
in three isoforms,  namely AKT1,  AKT2,  and AKT3,  which are typically  activated by the
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phosphorylation at  two specific  sites:  Thr308 by PDK1 [9]  and Ser473 by the mammali‐
an target  of  rapamycin complex 2  (mTORC2) [10].  Activated AKT can drive cell  survival,
proliferation,  growth,  angiogenesis,  and metabolism by phosphorylating downstream
signaling proteins,  which include inhibitory phosphorylation of  GSK3,  FOXO, BAD, p21,
p27,  and PGC I  and activating phosphorylation of  mTORC I  mammalian target  of
rapamycin complex I  (mTORC I),  IKK-β,  MDM2, ENTPD5,  SREBP1C,  AS160,  and SKP2,
which eventually leads to cell  cycle  progression and proliferation [10,  11].  Inhibition of
GSK3β has been shown to specifically  prevent  the degradation of  cyclin D1 and β-
catenin,  which can further  support  G1 to S  phase transition in different  types of  cancers
including prostate  cancers  [11,  12].  Activation of  AKT also helps to  evade apoptosis
directly by phosphorylation of  the pro-apoptotic  protein BAD [13].  Hence,  re-expres‐
sion of  wild-type PTEN  in  PTEN  null  prostate  cancer cell  lines  can lead to the initia‐
tion of  apoptosis  and regression of  tumors [14].  In addition,  AKT directly activates  the
mTOR pathway by phosphorylating TSC2,  which dismantles  the TSC1/TSC2 complex
that  keeps the Rheb in an inhibited state.  Once released from the TSC1/TSC2 inhibi‐
tion,  the Rheb can stimulate  the phosphotransferase activity of  mTORC1 and phosphor‐
ylate  the S6 kinase (S6K) and 4E-binding protein (4EBP1),  which in turn initiates  cap-
dependent  protein translation [15,  16].  Therefore,  as  a  consequence of  PTEN loss  in
prostate  cancers,  PI3K/AKT/mTOR pathway activation can strongly lead to enhanced
translation of  mRNAs involved in cell  growth and proliferation.

The PTEN gene is comprised of nine exons and totally codes for 403 amino acids [17]. The
substrate binding site of PTEN is in the C2 domain, which can bind to the phospholipid
membranes. The C2 domain also contains a signature motif HCXXGXXR that is typically found
in the protein tyrosine phosphateses (PTPs) and in the dual specific protein phosphatases
(DPPs). In addition, there is a short phosphatidylinositol-4,5-bisphosphate (PIP2) binding
domain (PDB) on the N terminus, a motif on the C-terminal tail that interacts with PDZ-BD
domain-containing proteins, and regulates protein stability and two PEST domains contain‐
ing proline (P), glutamic acid (E), serine (S), and threonine (T) amino acids, which acts as a
signal peptide that is also involved in the stability and degradation of PTEN [18]. When PIP2
binds to the PDB domain of PTEN it produces a conformational change in the protein leading
to allosteric activation of substrate binding site for attracting the substrates for de-phosphor‐
ylation [19]. In addition to the allosteric activation, the positive charge of the substrate binding
pocket of PTEN's is also essential for accommodating larger substrates such as phosphoino‐
sitides. The phosphatase domain of PTEN is a evolutionarily conserved domain that harbors
nearly 40% of its cancer-associated mutations, and the most common mutations are Cl24S
mutation, which abolishes both lipid binding and protein phosphatase activity, and the G129E
mutation that destroys the lipid phosphatase activity [20–22]. However, some of the impor‐
tant PTEN tumorigenic mutations occur on the C2 domain also, confirm the importance of the
structural integrity of the C terminus in maintaining PTEN activity and protein stability [23,
24] (Figure 1). In prostate cancer, PTEN loss most commonly results from a somatic muta‐
tion generated through copy number loss rather than point mutation [25, 26], however, recent
exome sequencing has identified several recurrent mutations also in the PTEN gene [27, 28].
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Figure 1. Different domains of PTEN and the phosphorylation sites. (Obtained from: Cell Res. 2008; 18: 807–816.)

2.1.1. PTEN loss combined with alterations in inflammatory pathway regulators

Various lines of evidence suggest that chronic inflammation is a closely associated event in the
tumorigenic mechanisms of prostate cancer [29, 30] and to the several mutations that are
causing this disease. A cytokine that is most commonly associated with tumor growth,
proliferation, and angiogenesis in many cancers and also the most frequently found inflam‐
matory mediator in prostate cancer is IL-6 [31]. When expressed at high levels, in addition to
imposing the inflammatory functions, a strong correlation between the circulating levels of
IL-6 and advancement in the stages of prostate cancer, therapeutic resistance, and as a result
an overall poor prognosis has been well established until now [32]. Although one of the most
important consequences of IL-6 expression is the stimulation of the JAK/STAT3 pathway [33],
phosphorylation of STAT3 at Scr727 and activation of its function by the PI3K-AKT pathway
cannot be ruled out completely because of the impact PTEN mutations can produce on this
pathway [34]. Such activation of STAT3 can also lead to metastatic behavior of prostate cancer
cells in both in vitro and in vivo conditions, through stimulation of angiogenesis and suppres‐
sion of antitumor immune responses [35]. Many inflammatory cytokines and chemokines
promote tumor progression by converging on and stimulating the IKK2/NF-κB signaling axis
[36]. In addition to the above-mentioned mechanisms, constitutive activation of NF-κB has
been correlated well with disease progression in prostate cancer [37], and therefore inhibition
of NF-κB activity in prostate cancers can suppress angiogenesis and subsequent tumor
invasion and metastasis by downregulating downstream targets such as VEGF and MMP9
[38]. In this context, it was determined using a mouse model that a constitutively active version
of IKK2 alone is insufficient for promoting prostate tumorigenesis; however, in combination
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with even heterozygous loss of PTEN, IKK2 activation can lead to an increase in tumor size,
accompanied by increased inflammation [39]. Thus, earlier studies clearly demonstrate that
the inflammatory cytokines secreted from the stromal microenvironment of the prostate cells
can cooperate with PTEN loss to drive epithelial prostate tumor towards an invasive disease.
Interestingly, recent studies have clearly indicated a greater role for the MDM2 oncogene in
the progression of prostate cancer by impacting PI3K/AKT and NF-κB pathways [40, 41].

2.2. MDM2 and prostate cancer

Alterations in the TP53 gene is one of the most commonly detected gene defects in a wide range
of cancers; however, alterations of this gene is believed to be of low frequency in prostate cancer
[42], and their clinical significance is also not fully investigated. On the contrary, the MDM2
gene seems to be amplified in a significant fraction of prostate cancers, and overexpression of
MDM2 protein without amplification is also observed as an alternate mechanism of p53
inactivation in these cancers [43, 44]. It has been widely reported that p21/WAF1 gene expres‐
sion could very well serve as an indicator of p53 activity because p21/WAF1 is under the
transcriptional control of p53 and therefore can be severely impacted when MDM2 is overex‐
pressed. However, the MDM2 gene itself is under the transcriptional control of p53, which
creates an auto-regulatory feedback loop in many cancer types (Figure 2) [45]. An interesting
fact that was revealed through mutation analysis of various cancer samples is that, in prostate
cancers, alterations in the TP53 gene seem to be uncommon, and therefore the clinical signif‐
icance of TP53 gene mutation has not been fully investigated for prostate cancers. Another
important limitation of studies related to TP53 gene defect in prostate cancer is that, in many
cases their focus was confined to the analysis of p53 gene alterations without exploring other

Figure 2. The pro-angiogenesis, apoptosis, cytokine release, and cell cycle pathways that are impacted by MDM2 ex‐
pression.
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possible mechanisms that might regulate its functions. For example, though the MDM2 gene
is amplified in a variety of tumors, MDM2 overexpression without amplification seems to be
a common mechanism of p53 inactivation in certain cancers. As it was mentioned earlier in
this section, it has been well established that p21/WAF I gene expression can serve as a good
indicator of p53 activity, because p21/WAFI expression is under the transcriptional control of
p53, and consequently indicate any related abnormality. However, several studies have
analyzed the patterns of p53 expression and identified a correlation with MDM2 and p21 in
prostate cancer patients. Results have confirmed a close association between levels of these
markers and clinico-pathological parameters of poor outcome, including time to relapse and
proliferative index. In addition, overexpression of MDM2 has been found to be associated with
lack of response to chemoradiotherapy in oesophageal cancer and has been shown to exhibit
androgen independence in prostate cancer cell lines [46, 47]. Thus, MDM2 overexpression was
significantly associated with advanced stage prostate cancer (PCa) [48], a finding confirmed
by several investigators [49, 50] validating the importance of MDM2 expression in prostate
cancers. Recent studies have also shown that MDM2 expression enhances the angiogenic
potential and proliferative capacity of PCa cells [51] and negatively impacts the effects of
radiation and chemotherapy [52]. Thus, it is predictable that expression of MDM2 may play
an important role, at least in part, in stimulating the aggressive nature of PCa in African-
American (AA) patients. Recently, a single nucleotide polymorphism (SNP) referred as
SNP309 was found at position 309 in the P2 promoter region of MDM2 gene. This T > G
polymorphism (rs22789744) which is located in the intronic portion of the promoter was shown
to increase the binding affinity of the transcriptional activator Sp1, and increase the expression
of MDM2 protein levels [53]. During the transcriptional activation of MDM2 gene, both the
androgen receptor (AR) and estrogen receptors (ER) have been shown to form complexes with
Sp1 and act as co-regulators and cause increase in protein expression [54, 55]. In addition,
studies in ER-positive tumors such as breast and ovarian cancer have shown strong correlation
between younger age of disease onset and the presence of MDM2 SNP309 G allele [56, 57].
Interestingly, in the ovarian cancer patients, the age of onset in women with high level
expression of ER and the presence of SNP309 G allele was 8 years earlier than those without
the SNP309 G allele. Similarly, in a cohort of breast cancer patients with the G/G SNP309
genotype the age of onset was 7 years earlier than the patients with the T/T genotype. Fur‐
thermore, MDM2 SNP309 G allele displayed early-onset of soft-tissue sarcoma, diffuse large
B-cell lymphoma, colorectal cancer, and non-small cell lung cancer in premenopausal women
with active estrogen signaling than the cohorts without the SNP309 polymorphism [58–61].
Hence, it is believed that SNP309 G allele found at the MDM2 promoter region in AA patients
may be responsible for the aggressive phenotype and early onset of their prostate cancers (48).
Indeed, this appears to be one of the first studies of MDM2 SNP309 showing the implication
of this particular polymorphism to the racial differences in the clinic-pathologic presentation
of the prostate cancer. Additionally, the above mentioned study is the first report that is closely
correlating SNP309 genotype to MDM2 protein expression in a group of prostate cancer
patients and showing its close correlation with tumor progression. Thus, several aspects of
MDM2 expression and the gene polymorphisms seem to specifically impact the nature and
progression of prostate cancers.
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2.2.1. MDM2 and cytokine expression

In addition to being the trigger  for  developing cancers,  MDM2 expression seems to be
responsible  for  several  events  that  promote cancer  aggressiveness [48].  Increased
expression of  VEGF in cancer  cells,  which are positive for  MDM2, is  a  well-established
phenomenon that  occurs through elevation of  HIF-1alpha even during the absence of
hypoxia in the tumor microenvironment [51].  In addition,  many reports  in the litera‐
ture confirm that  MDM2 overexpression could lead to activation of  STAT3 and NF-κB
pathways and cause elevation of  cytokines that  in-turn can stimulate  cancer  progres‐
sion.  One of  the unique biological  functions of  MDM2 is  its  ability  to  induce sterile
tissue inflammation,  which is  a  major  element  of  non-infectious tissue injury that  occurs
following exposure to toxins or  reperfusion following ischemia.  For  example,  an acute
post-ischemic kidney injury that  started as  a  sterile  inflammatory response was re‐
versed using the MDM2 blockade with nutlin-3 [62].  This  effect  was found to be totally
independent  of  p53 that  was observed in a  p53-deficient  mice.  Also,  MDM2 blockade
effectively suppressed the post-ischemic induction of  pro-inflammatory cytokines and
chemokines as  well  as  the infiltration of  leukocytes  to  the site  of  injury.  Following these
observations,  the mechanism underlying MDM2-mediated inflammation was identified
under in  vitro  conditions showing that  MDM2 could act  as  a  co-factor  for  NF-NF-κB
binding to its  gene promoter  binding sites  [62].  This  was actually confirmed by the
electromobility  shift  assay in p53-deficient  mouse embryonic  fibroblasts  using lipopoly‐
saccharide (LPS)  stimulation [62].  This  observation is  similar  to  several  other  reports
which confirm that  MDM2 blockade with nutlin-3  could effectively suppresses LPS-
induced lung inflammation through interference of  NF-NF-κB DNA binding in nutro‐
phils;  however this  effect  of  nutlin-3 was dependent  on the presence of  intact  p53 [62].
Similar  to  the activation of  NF-κB pathway,  MDM2 might  release other  cytokines like
Interleukins (IL's)  and support  growth and progression of  cancer.

2.3. TMPRSS2 and ERG fusions in prostate cancer

TMPRSS2 is an androgen regulated prostate-specific protein that is encoded in humans by
the TMPRSS2 gene [63]. It is a 492 amino acid type II transmembrane serine protease
(70 KDa) that is expressed at the cell surface in order to regulate cell-cell and cell-matrix in‐
teractions [64]. The serine protease gene family, play crucial roles in different physiological
and pathological processes such as digestion, blood coagulation, remodeling of tissues, inva‐
sion of tumor cells, inflammatory responses, and apoptosis. The TMPRSS2 protein contains
a Serine protease domain (aa 255-492) with three catalytic residues of histidine, aspartate,
and serine, respectively, a Scavenger receptor cysteine-rich domain (SRDR, aa 149-242), an
LDL receptor class A (LDLRA, aa 113-148) domain and a predicted transmembrane domain
(aa 84-106) [65].

ERG is a member of the erythroblastosis virus E26 (ETS) oncogene family. There are over 20
ETS transcription factor family members, but ERG is the ETS transcription factor primarily
involved in prostate cancer gene fusions [66]. The ERG protein interacts with ETS members as
well as other transcription factors through its protein-protein interacting domain to regulate
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transcriptional activity of several downstream target genes that are crucial for DNA damage,
cell invasion and proliferation, epithelial to mesenchymal transformation (EMT) as well as
cellular differentiation and epigenetic control [66–68].

TMPRSS2 is expressed in normal and neoplastic prostate tissue and is strongly induced by
androgens in androgen-sensitive prostate cell lines [65]. A major milestone in PCa research
was the identification of recurrent fusions between TMPRSS2 and ERG [63]. TMPRSS2-ERG
is fused in PCa through deletion of genomic DNA via a homogeneous deletion site between
ERG and TMPRSS2 on chromosome 21q22.2 or through translocation or both [69–71]. These
rearrangements (Figure 1) result in the formation of a TMPRSS2-ERG fusion transcript and
the overexpression of ERG [63]. The TMPRSS2 and ERG genes are both located on the same
chromosome (21q) and the distance between the TMPRSS2 and ERG oncogene is relatively
short at 3 mega bases (MB) (Figure 3). This short distance has been suggested to account for
the higher frequency of TMPRSS2: ERG fusions in prostate cancer [69, 73].

TMPRSS2-ERG fusion occurs early in prostate carcinogenesis at the transition between benign
and prostatic intraepithelial neoplasia (PIN). Approximately 50% of PCas from prostate-
specific antigen (PSA) screened surgical cohorts are TMPRSS2-ERG fusion-positive, and >90%
of PCas over-expressing ERG harbor TMPRSS2-ERG fusions [74]. Over eight isoforms of the
TMPRSS2-ERG fusion transcript have been identified with varying levels of expression in
different PCa samples [75]. The most frequently found TMPRSS2-ERG fusion in PCa is the
deletion between the 5 UTR end of TMPRSS2 exon 1 and 5 end of ERG exon 4 [76].

Figure 3. Mechanism of TMPRSS2-ERG fusion (chromosome 21). (1) Large deletion of intervening genetic region be‐
tween ERG and TMPRSS2 genes (most common). (2) Translocation of TMPRSS2 and ERG genes. Reproduced with per‐
mission from the copyright holder: Hossain [72].

2.3.1. Consequences of TMPRSS2-ERG fusion in prostate cancer

TMPRSS2 is  an androgen-responsive gene and AR regulated expression of  the TMPRSS2-
ERG fusion gene plays an early role  in prostate  cancer  development and progression as
its  presence is  required for  prostate  cancer  initiation in ETS positive tumors [74].  The
fusion results  in the modulation of  transcriptional  patterns and cellular  pathways causing
the development of  prostatic  intraepithelial  neoplasia  (PIN) [77].  In particular,  gene
expression profiling has linked a deregulation of  WNT and TGF-β/BMP signaling in
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fusion-positive prostate  tumors [78].  It  has also been shown in transgenic  mice that
overexpression of  ERG as a  result  of  TMPRSS2:  ERG fusion leads to the formation of
murine PIN (mPIN) by 5–6 months of  age [74,  79].  Several  studies  have also con‐
firmed that  the overexpression of  ERG leads to prostate  cell  migration and invasion that
correlates  with increased tumor metastasis  and negative patient  outcome [79,  80].  The
most  prominent  role  of  ERG that  has been consistently shown is  its  ability  to  increase
cell  migration and invasion via  abrogating prostate  epithelial  differentiation and inducing
epithelial  to  mesenchymal transition and motility-associated genes such as  MMPs [81].

PCa specimens containing the TMPRSS2-ERG rearrangement are also significantly enriched
for the loss of tumor suppressor gene phosphatase and tensin homologue PTEN [77], and it is
already well established that aberrant PTEN activity is associated with poor prognosis in PCa
[82]. Further studies have confirmed that TMPRSS2-ERG rearrangement cooperates with
PTEN loss to promote prostate cancer progression from high-grade prostatic intraepithelial
neoplasia (PIN) to invasive adenocarcinoma [77, 83].

2.3.2. TMPRSS2-ERG fusions and ethnicity

There are several studies evaluating the relationship between ethnicity and TMPRSS2-ERG
expression in PCa. TMPRSS2-ERG gene fusion correlated with ethnicity in a multivariate
analysis involving Caucasians [71], African-Americans, and Japanese men with PCa [71].
TMPRSS2-ERG gene fusion was present in 50% (21/42) of Caucasians, 31.3% (20/64) of African-
Americans, and 15.9% (7/44) of Japanese patients. A subsequent study found that TMPRSS2-
ERG gene fusions were identified in 48/112 tumors (42.9%) from a group of Caucasian men,
while 28/105 tumors (26.7%; p = 0.015) from African-American men were positive for the gene
fusion [84]. Interestingly, Mosquera and colleagues recognized that the TMPRSS2-ERG fusion
through deletion, which has been associated with worse prognosis, is more common in PCa
of African-American patients [73].

2.3.3. Prognostic value of the TMPRSS2-ERG fusion gene

The prognostic potential of TMPRSS2-ERG gene fusion is promising as it can be detected in
urine, blood, and tissue using quantitative polymerase chain reaction [85, 86], Fluorescence in
situ hybridization (FISH) [87], DNA sequencing, and Genechip [88]. This has significant
applications toward understanding its role in PCa pathogenesis and developing novel
diagnostics and targeted therapeutics. TMPRSS2 and TMPRSS2-ERG expression is decreased
in response to ADT in primary PCa [89]. Interestingly, the ERG levels in TMPRSS2-ERG fusion-
positive castration resistant prostate cancer CRPC are comparable with the levels in fusion
gene-positive primary PC, and this confirms that TMPRSS2-ERG expression is reactivated by
AR in CRPC [70]. These findings prove that restored AR receptor signaling contributes to the
progression to CRPC in part through the TMPRSS2-ERG axis and highlights a therapeutic
platform that can be explored in the management of CRPC. More recently, the TMPRSS2-ERG
fusion has been linked to taxane resistance in preclinical models of castration-resistant prostate
cancer, and TMPRSS2-ERG expression detection in the peripheral blood of metastatic castra‐
tion-resistant prostate cancer patients correlates with docetaxel resistance [90]. Therefore, its
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presence predicts resistance to docetaxel, and it may be useful to select treatment and to avoid
possible toxicities in refractory patients.
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